
Now, a research group in Tübingen, Germany, including University of Tübingen researchers Yossi Yovel, Peter Stilz and Hans Ulrich-Schnitzler, and Matthias Franz from the Max Planck Institute of Biological Cybernetics, has demonstrated that this process of plant classification is not as difficult as previously thought.
The group used a sonar system to emit bat-like, frequency-modulated ultrasonic pulses. The researchers recorded thousands of echoes from live plants of five species. An algorithm that uses the time-frequency information of these echoes was able to classify plants with high accuracy. This new algorithm also provides hints toward which echo characteristics might be best understood by the bats.
According to the group, these results enable us to improve our understanding of this fascinating ability of how bats classify plants, but do so without entering the bat's brain.
Journal reference: Yovel Y, Franz MO, Stilz P, Schnitzler H-U (2008). Plant Classification from Bat-Like Echolocation Signals. PLoS Comput Biol 4(3): e1000032. doi:10.1371/journal.pcbi.1000032
Adapted from materials provided by Public Library of Science, via EurekAlert!, a service of AAAS.
No comments:
Post a Comment